If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=80t-16t^2-96
We move all terms to the left:
0-(80t-16t^2-96)=0
We add all the numbers together, and all the variables
-(80t-16t^2-96)=0
We get rid of parentheses
16t^2-80t+96=0
a = 16; b = -80; c = +96;
Δ = b2-4ac
Δ = -802-4·16·96
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-16}{2*16}=\frac{64}{32} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+16}{2*16}=\frac{96}{32} =3 $
| 0x+28.5=281 | | 9x-5x+x=35+15 | | 2x√x-3+1=9 | | 18(b-1)+4=2(9b-7) | | 1=12x-3.6 | | 7+4b=11b=11(6)=66 | | 12x-3.6=1 | | 86=2a+72 | | t=61+-6t+-5t2 | | f+7/3=3 | | 3x+2x=800 | | x-9=-3x=15 | | -24x=-3x | | 38=5(v+6)-7v | | 17x-3=75° | | 246+g=360 | | 9=-2(x-4) | | 4(b+5)/3=(3b-35)/6 | | 15.50-c=3.00 | | 215+g=360 | | 0=-0.006x^2+.8x-130000 | | D=9.8t^2-15t+100 | | -48÷.5=x | | -48÷1/2=x | | (6-y)14+y(17)=99 | | 3(4h+5)+2=14+3(5-2) | | -4(12-5x)=-8(-3+2x) | | -6(n-4)=12 | | -7(-3+x)=14 | | (6-y)14+y17=99 | | -74=-10-8k | | -(3)1/3=-1/2g |